笔下文学

笔下文学>中国科技史成就 > 第5章 王祯创制耕耘器具(第2页)

第5章 王祯创制耕耘器具(第2页)

《九章算术》不仅在中国数学史上具有重要地位,对世界数学的发展也有杰出的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都在世界数学史上处于领先地位。

在数系理论方面

刘徽用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。

在筹式演算理论方面

刘徽赋予先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。

在勾股理论方面

刘徽逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。

割圆术与圆周率

刘徽在《九章算术·圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到9边形的面积,得到π=70=。,又算到07边形的面积,得到π=970=。,称为“徽率”。

求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动,祖冲之为此付出了艰苦卓绝的努力。

有一天,祖冲之正在翻阅刘徽给《九章算术》作的注解,他被刘徽用高度的抽象概括力建立的“割圆术”与极限观念所折服,不禁拍案叫绝。连连称赞:“真了不起!真了不起!”在一边专心致志看书的儿子祖暅被这突如其来的声音所震动,忙问:“父亲,谁了不起了?”“我说刘徽了不起。”祖冲之的眼睛仍然停留在竹简上。“刘徽是谁?”当时只有十一、二岁的祖暅还不知道刘徽是个什么样的人。“三国时代的科学家。”“他有什么地方了不起呢?”“他用极限观念建立了割圆术。”“割圆术?”祖暅茫茫然地望着父亲。

“你看!”祖冲之指着手中拿着的竹简,滔滔不绝的给儿子讲着。“刘徽提出:在圆内作一个正六边形,每边和半径相等。然后把六边所对的六段弧线一一平分。作出一个正十二边形。这个十二边形的边长总加起来比六边形的边长的总和要大,比较接近圆周,但仍比圆周短。刘徽认为,用同样方法,作出二十四边形。那周长总和又增加了,又接近圆周了。这样一直把圆周分割下去,割得越细,和圆周相差越少,割而又割,直到不可再割的时候,这个无限边形就和圆周密合为一,完全相等了。刘徽用割圆术计算了六边、十二边、二十四边、四十八边,一直计算到九十六边形的边长之和,得出圆周是直径的。。”

祖冲之把刘徽计算圆周率的“割圆术”讲给儿子听,祖暅虽然似懂非懂,但也引起了他无限的兴趣。“刘徽真了不起!真行!”祖冲之听着孩子的话,沉思片刻说:“我告诉你吧,刘徽算出的圆周率,其实他自己也不满意。他声明:实际的圆周率应该比。稍大。如果他继续‘割了又割’地割下去。就会算得更精确。”“那我们来继续‘割而又割’,行吗?”祖暅问了一句。“行呀,我们可以算出更精确的圆周率!这就需要我们付出更为艰巨的劳动!”

这一夜,父子俩久久未能入睡。枯燥无味的数学却引来了儿子无限的兴趣,丰富的幻想;祖冲之则盘算着如何去消化前人的成果,开拓数学研究的新路。

年,祖冲之被派在刘子鸾手下做一个小官。他始终没放松对科学技术的钻研,每天早上都得进宫办事,下午一回来,就一头钻进了他的书房,有时甚至忘了吃晚饭,忘了休息。年幼的儿子,被他父亲的这种孜孜不倦,废寝忘食的刻苦攻关精神所感动。

一天,祖冲之早上进宫办完杂事,就匆匆赶回了家,在书房的地板上画了一个直径一丈的大圆,运用“割圆术”的计算方法,在圆内先作了一个正六边形。他们的工作就这样开始了。日复一日,不论是酷暑,还是严寒,从不间断地辛勤地计算着……

祖冲之为了求出最精密的圆周率,对九位数进行包括加减乘除及开方等运算一百三十次以上。这样艰巨复杂的计算,在当时没有算盘,只靠一些被称作“算筹”的小竹棍,摆成纵横不同的形状,用来表示各种数目,然后进行计算,这不仅需要掌握纯熟的理论和技巧,更需具备踏踏实实、一丝不苟的严谨态度,不惜付出艰巨的劳动代价,才能取得杰出的成就。经过艰苦的计算,祖冲之终于得出较精确的圆周如直径为,圆周大于。9,小于。97。

祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。祖冲之求出的圆周率,精确到小数点后七位,这在当时全世界上只有他一人。祖冲之对圆周率数值的精确推算值,用他的名字命名为“祖冲之圆周率”,简称“祖率”。

秦九韶(0~),字道古,安岳人,我国宋代著名的数学家。秦九韶自幼聪敏好学,尤其是在数学学科上,他更是表现出了高度的兴趣和热爱。宋绍定四年(年),秦九韶考中进士,曾担任县尉、通判、参议官、州守、同农、寺丞等职,先后在湖北、安徽、江苏、浙江等地做官。他在政务之余,对数学进行潜心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。

宋淳佑四至七年(~7),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了《数书九章》一书,并创造了“大衍求一术”。这不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。现在,世界各国从小学、中学到大学的数学课程,几乎都要接触到他的定理、定律和解题原则。

划时代巨著《数书九章》

《数学九章》共9章8卷,九章即九类:“大衍类”、“天时类”、“田域类”、“测望类”、“赋役类”、“钱谷类”、“营建类”、“军旅类”、“市物类”,每类9题共计8题。该书内容丰富之极,上至天文、星象、历律、测候,下至河道、水利、建筑、运输,各种几何图形和体积,钱谷、赋役、市场、牙厘的计算和互易。许多计算方法和经验常数直到现在仍有很高的参考价值和实践意义,被誉为“算中宝典”。

此书不仅代表着当时中国数学的先进水平,也是中世纪世界数学的最高水平。我国数学史家梁宗巨评价道:“秦九韶的《数书九章》是一部划时代的巨著,内容丰富,精湛绝伦。特别是大衍求一术及高次代数方程的数值解法,在世界数学史上占有崇高的地位。那时欧洲漫长的黑夜犹未结束,中国人的创造却像旭日一般在东方发出万丈光芒。”

中国剩余定理——大衍求一术

秦九韶所发明的“大衍求一术”,即现代数论中一次同余式组解法,是中世纪世界数学的最高成就,比西方80年著名数学家高斯建立的同余理论早年,被西方称为“中国剩余定理”。秦九韶不仅为中国赢得无尚荣誉,也为世界数学作出了杰出贡献。

任意次方程的数值解

秦九韶在《数书九章》中除“大衍求一术”外,还创拟了正负开方术,即任意高次方程的数值解法,也是中世纪世界数学的最高成就,秦九韶所发明的此项成果比1819年英国人霍纳的同样解法早7年。秦九韶的正负开方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。

此外,秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时秦九韶又给出了筹算的草式,可使它扩充到一般线性方程中的解法。秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式,与海伦公式完全一致。

杨辉,生卒年不详,字谦光,浙江钱塘(今杭州)人,南宋时期杰出的数学家和数学教育家。杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,杨辉一生留下了大量的著述,它们是:《详解九章算法》卷、《日用算法》卷、《乘除通变本末》卷、《田亩比类乘除捷法》卷、《续古摘奇算法》卷,其中后三种为杨辉后期所著,一般称之为《杨辉算法》。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。

杨辉一生最杰出的成就是排出了丰富的纵横图并讨论了它的构成规律。说起杨辉的这一成就,还得从偶然的一件小事说起。

一天,台州府的地方官杨辉出外巡游,路上,前面铜锣开道,后面衙役殿后,中间,大轿抬起,好不威风。走着走着,只见开道的镗锣停了下来,前面传来孩童的大声喊叫声,接着是衙役恶狠狠的训斥声。杨辉忙问怎么回事,差人来报:“孩童不让过,说等他把题目算完后才让走,要不就绕道。”

杨辉一看来了兴趣,连忙下轿抬步,来到前面。衙役急忙说:“是不是把这孩童哄走?”

杨辉摸着孩童头说:“为何不让本官从此处经过?”

孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了。”

“什么算式?”

“就是把到9的数字分三行排列,不论直着加,横着加,还是斜着加,结果都是等于。我们先生让下午一定要把这道题做好。我正算到关键之处。”

杨辉连忙蹲下身,仔细地看那孩童的算式,觉得这个数字,从哪见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼记》中提及的。杨辉和孩童俩人连忙一起算了起来,直到天已过午,俩人才舒了一口气,结果出来了,他们又验算了一下,结果全是,这才站了起来。

杨辉回到家中,反复琢磨,一有空闲就在桌上摆弄着这些数字,终于发现一条规律。一开始将九个数字从大到小斜排三行,然后将9和对换,左边7和右边对换,最后将位于四角的、、、8分别向外移动,排成纵横三行,就构成了九宫图。后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”、“六六图”、“衍数图”、“易数图”、“九九图”、“百子图”等许多类似的图。杨辉把这些图总称为纵横图,并于7年写进自己的数学著作《续古摘奇算法》一书中,流传后世。他是世界上第一个给出了如此丰富的纵横图和讨论了其构成规律的数学家。

已完结热门小说推荐

最新标签